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Abstract

An event with positive energy transfers this energy photons which
carries it on recorders observers. Observers know that this event occurs,
not before it happens. But event with negative energy should absorb
this energy from observers. Consequently, observers know that this event
happens before it happens. Since time is irreversible then only the events
with positive energy can occur. In single-particle states events with a
fermion have positive energy and occurences with an antifermion have
negative energy. In double-particle states events with pair of antifermions
have negative energy and events with pair of fermions and with fermion-
antifermion pair have positive energy.

1 Introduction

Let t, x1, x2,x3 be real numbers, and let x := 〈x1, x2, x3〉.
Let A be some pointlike event.
Let ϕ(t,x) be a 4× 1-complex matrix such that

ϕ†(t,x)ϕ(t,x) = ρ(t,x) (1)

where ρ(t,x) is the probability density of A.
Let1 ρ(t,x) = 0 if t > πc

h and/or |x| > πc
h .

In that case ϕ(t,x) obeys some generalization of the Dirac equation [1]. The
Dirac equation for free fermion does have the following form:(

1

c

∂

∂t
−

3∑
s=1

β[s] ∂

∂xs
− i

h

c
nγ[0]

)
ϕ(t,x) = 0.

Here n is a natural number and

β[1] : =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , β[2] :=


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 ,

1c := 299792458, h := 6.6260755−34
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β[3] : =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , γ[0] :=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

In this case operator Ĥ0 is the free Dirac Hamiltonian if

Ĥ0 := c

(
3∑
s=1

β[s]i
∂

∂xs
+

h

c
nγ[0]

)
.

Let k be a vector 〈k1, k2, k3〉 where ks are integer numbers and let

ω (k) :=
√
k2

1 + k2
2 + k2

3 + n2

where n is a natural number.
Let

e1 (k) :=
1

2
√
ω (k) (ω (k) + n)


ω (k) + n+ k3

k1 + ik2

ω (k) + n− k3

−k1 − ik2

 ,

e2 (k) :=
1

2
√
ω (k) (ω (k) + n)


k1 − ik2

ω (k) + n− k3

−k1 − ik2

ω (k) + n+ k3

 ,

e3 (k) :=
1

2
√
ω (k) (ω (k) + n)


−ω (k)− n+ k3

k1 + ik2

ω (k) + n+ k3

k1 + ik2

 ,

e4 (k) :=
1

2
√
ω (k) (ω (k) + n)


k1 − ik2

−ω (k)− n− k3

k1 − ik2

ω (k) + n− k3

 .

In that case functions e1(k)(2c/h)3/2 exp(−i(h/c)kx) and e2(k)(2c/h)3/2 exp(−i(h/c)kx)

are eigenvectors of Ĥ0 with eigenvalues (+hω(k)), and functions e3(k)(2c/h)3/2 exp(−i(h/c)kx)

and e4(k)(2c/h)3/2 exp(−i(h/c)kx) are eigenvectors of Ĥ0 with eigenvalues (−hω(k)).
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2 Single-Particle States

Let H be some unitary space. Let 0̃ be the zero element of H. That is any
element F̃ of H obeys to the following conditions:

0F̃ = 0̃, 0̃ + F̃ = F̃ , 0̃†F̃ = F̃ , 0̃† = 0̃.

Let 0̂ be the zero operator on H. That is any element F̃ of H obeys to the
following condition:

0̂F̃ = 0F̃ , and if b̂ is any operator on H then

0̂ + b̂ = b̂+ 0̂ = b̂, 0̂b̂ = b̂0̂ = 0̂.

Let 1̂ be the identy operator on H. That is any element F̃ of H obeys to the
following condition:

1̂F̃ = 1F̃ = F̃ , and if b̂ is any operator on H then
1̂b̂ = b̂1̂ = b̂.

Let linear operators bs,k (s ∈ {1, 2, 3, 4}) act on all elements of this space.
And let these operators fulfill the following conditions:{

b†s,k, bs′,k′

}
:= b†s,kbs′,k′ + bs′,k′b†s,k =

(
h

2πc

)3

δk,k′δs,s′ 1̂,

{bs,k, bs′,k′} = bs,kbs′,k′ + bs′,k′bs,k =
{
b†s,k, b

†
s′,k′

}
= 0̂.

Hence,
bs,kbs,k = b†s,kb

†
s,k = 0̂.

There exists element F̃0 of H such that F̃ †0 F̃0 = 1 and for any bs,k: bs,kF̃0 = 0̃.

Hence, F̃ †0 b
†
s,k = 0̃.

Let

ψs (x) :=
∑
k

4∑
r=1

br,ker,s (k) exp

(
−i

h

c
kx

)
.

Because
4∑
r=1

er,s (k) er,s′ (k) = δs,s′

and ∑
k

exp

(
−i

h

c
k (x− x′)

)
=

(
2πc

h

)3

δ (x− x′)

then {
ψ†s (x) , ψs′ (x′)

}
:= ψ†s (x)ψs′ (x′) + ψs′ (x′)ψ†s (x)

= δ (x− x′) δs,s′ 1̂.
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And these operators obey the following conditions:

ψs (x) F̃0 = 0̃, {ψs (x) , ψs′ (x′)} =
{
ψ†s (x) , ψ†s′ (x′)

}
= 0̂.

Hence,

ψs (x)ψs′ (x′) = ψ†s (x)ψ†s′ (x′) = 0̂.

Let

Ψ (t,x) :=

4∑
s=1

ϕs (t,x)ψ†s (x) F̃0.

These function obey the following condition:

Ψ† (t,x′) Ψ (t,x) = ϕ† (t,x′)ϕ (t,x) δ (x− x′) .

Hence, ∫
dx′ ·Ψ† (t,x′) Ψ (t,x) = ρ (t,x) .

Let a Fourier series of ϕs (t,x) has the following form:

ϕs (t,x) =
∑
p

4∑
r=1

cr (t,p) er,s (p) exp

(
−i

h

c
px

)
.

In that case:

Ψ (t,p) :=

(
2πc

h

)3 4∑
r=1

cr (t,p) b†r,pF̃0.

If
H0 (x) := ψ† (x) Ĥ0ψ (x) (2)

then H0 (x) is called a Hamiltonian Ĥ0 density.
Because

Ĥ0ϕ (t,x) = i
∂

∂t
ϕ (t,x)

then ∫
dx′ · H0 (x′) Ψ (t,x) = i

∂

∂t
Ψ (t,x) . (3)

Therefore, if

Ĥ :=

∫
dx′ · H0 (x′)

then Ĥ acts similar to the Hamiltonian on space H.
And if

EΨ

(
F̃0

)
:=
∑
p

Ψ† (t,p) ĤΨ (t,p)
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then EΨ

(
F̃0

)
is an energy of Ψ on vacuum F̃0.

Operator Ĥ obeys the following condition:

Ĥ =

(
2πc

h

)3∑
k

hω (k)

(
2∑
r=1

b†r,kbr,k −
4∑
r=3

b†r,kbr,k

)
.

This operator is not positive defined and in this case

EΨ

(
F̃0

)
=

(
2πc

h

)3∑
p

hω (p)

(
2∑
r=1

|cr (t,p)|2 −
4∑
r=3

|cr (t,p)|2
)

.

This problem is usually solved in the following way [2, p.54]:
Let:

v1 (k) : = γ[0]e3 (k) ,

v2 (k) : = γ[0]e4 (k) ,

d1,k : = −b†3,−k,

d2,k : = −b†4,−k.

In that case:

e3 (k) = −v1 (−k) ,

e4 (k) = −v2 (−k) ,

b3,k = −d†1,−k,

b4,k = −d†2,−k.

Therefore,

ψs (x) : =
∑
k

2∑
r=1

(
br,ker,s (k) exp

(
−i

h

c
kx

)
+

+d†r,kvr,s (k) exp

(
i
h

c
kx

))

Ĥ =

(
2πc

h

)3∑
k

hω (k)

2∑
r=1

(
b†r,kbr,k + d†r,kdr,k

)
−2
∑
k

hω (k) 1̂.

The first term on the right side of this equality is positive defined. This term
is taken as the desired Hamiltonian. The second term of this equality is infinity
constant. And this infinity is deleted (?!) [2, p.58]
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But in this case dr,kF̃0 6= 0̃. In order to satisfy such condition, the vacuum

element F̃0 must be replaced by the following:

F̃0 → Φ̃0 :=
∏
k

4∏
r=3

(
2πc

h

)3

b†r,kF̃0.

But in this case:
ψs (x) Φ̃0 6= 0̃.

And condition (3) isn’t carried out.
In order to satisfy such condition, operators ψs (x) must be replaced by the

following:

ψs (x)→ φs (x) :=

:=
∑
k

2∑
r=1

(
br,ker,s (k) exp

(
−i

h

c
kx

)
+ dr,kvr (k) exp

(
i
h

c
kx

))
.

Hence,

Ĥ =

∫
dx · H (x) =

∫
dx · φ† (x) Ĥ0φ (x) =

=

(
2πc

h

)3∑
k

hω (k)

2∑
r=1

(
b†r,kbr,k − d

†
r,kdr,k

)
.

And again we get negative energy.
Let’s consider the meaning of such energy: An event with positive energy

transfers this energy photons which carries it on recorders observers. Observers
know that this event occurs, not before it happens. But event with negative
energy should absorb this energy from observers. Consequently, observers know
that this event happens before it happens. This contradicts Theorem 3.4.2 [3].
Therefore, events with negative energy do not occur.

Hence, over vacuum Φ̃0 single fermions can exist, but there is no single
antifermions.

3 Two-Particle States

A two-particle state is defined the following field operator [4]:

ψs1,s2 (x,y) :=

∣∣∣∣ φs1 (x) φs2 (x)
φs1 (y) φs2 (y)

∣∣∣∣ .
In that case:

Ĥ = 2h

(
2πc

h

)6 (
Ĥa + Ĥb

)
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where

Ĥa : =
∑
k

∑
p

(ω (k)− ω (p))

2∑
r=1

2∑
j=1

×

×
{
v†j (−k) vj (−p) e†r (p) er (k)×

×
(

+b†r,pd
†
j,−kdj,−pbr,k

)
+

+
(

+d†r,−pb
†
j,kbj,kdr,−p

)
+

+v†j (−p) vj (−k) e†r (k) er (p)×

×
(
−b†r,kd

†
j,−pdj,−kbr,p

)
+

+
(
−b†r,pd

†
j,−kdj,−kbr,p

)}
and

Ĥb : =
∑
k

∑
p

(ω (k) + ω (p))

2∑
r=1

2∑
j=1

×

×
{
v†j (−p) vj (−k) v†r (−k) vr (−p)×

×
(
−d†r,−kd

†
j,−pdj,−kdr,−p

)
+

+
(
−d†r,−pd

†
j,−kdj,−kdr,−p

)
+e†r (k) er (p) e†j (p) ej (k)×

×
(

+b†r,kb
†
j,pbj,kbr,p

)
+

+
(

+b†r,pb
†
j,kbj,kbr,p

)}
.

If velosities are small then the following formula is fair.

Ĥ = 4h

(
2πc

h

)6 (
Ĥa + Ĥb

)
where

Ĥa : =
∑
k

∑
p

(ω (k)− ω (p))×

×
2∑
r=1

2∑
j=1

(
d†j,−pb

†
r,kbr,kdj,−p − b

†
j,pd

†
r,−kdr,−kbj,p

)
and

Ĥb : =
∑
k

∑
p

(ω (k) + ω (p))×
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×
2∑
j=1

2∑
r=1

(
b†j,pb

†
r,kbr,kbj,p − d

†
j,−pd

†
r,−kdr,−kdj,−p

)
.

Therefore, in any case events with pairs of fermions and events with fermion-
antifermion pairs can occur, but events with pairs of antiftrmions can not hap-
pen.

4 Conclusion

Therefore, an antifermion can exists only with a fermion.
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